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LETTER TO THE EDITOR 

Correlation of subsystems for the transition to a 
convective pattern 

Ariel Femindez 
Max-Planck-Institut fur Biophysikalische Chemie, Am Fassberg, D-3400 Gottingen, 
Federal Republic of Germany 

Received 20 July 1988 

Abstract. We implement an evolutionary model of spatially coupled subsystems to clarify 
the cooperative effect causing the transition to a convective roll pattern in a Rayleigh-BCnard 
cell. This cell is swept through its threshold by means of a step in the heat input from the 
lower plate. The correlation of subsystems accounts for the amplification of fluctuations. 
The experimental transients for the onset of the convective pattern are shown to be 
theoretically reproducible. 

Systematic mode reductions in fluid flow problems attempt at establishing hierarchies 
of equations essentially to capture the universality class for the order parameter equation 
(OPE) [l-31. In spite of considerable progress in this direction, there are instances in 
which the cooperativity effects responsible for the stochastic source term in the OPE 

remain elusive [3,4]. This is so when the OPE is obtained by truncating the underlying 
realistic equations. 

The stochastic centre manifold (CM)  theory provides a systematic renormalisation 
method by which this problem can be tackled [5,6]. The C M  is a locally attractive 
and locally invariant portion of phase space representing the statistical subordination 
of the fast-relaxing degrees of freedom. It is obtained essentially from a mean-field 
derivation with a free-energy potential containing higher-order terms coupling the 
fast-relaxing modes and the order parameters or dominant modes. The transition to 
a dissipative organisation can be viewed as the amplification and propagation of 
fluctuations along the CM. The point we would like to address in this paper can be 
formulated as follows: what is the nature of the cooperative effects involving subsystem 
correlation which is responsible for the collective fluctuations in the order parameter 
evolution? Specifically, we shall concentrate on a classical flow system on which this 
question remains open [4,7]: the transition to a convective roll pattern in a Rayleigh- 
Binard cell swept through its threshold by means of a step in the heat input at the 
lower plate. We are interested in the amplification of intrinsic fluctuations in the order 
parameters which results from the correlation of spatially coupled subsystems. 

It should be noted that a CM reduction determines a canonical decomposition of 
the system in spatially coupled subsystems. Those subsystems whose microstate lies 
in the C M  are regarded as ‘organised’ and thus the whole process of transition to the 
convective pattern can be then analysed in terms of the evolution of information 
carriers. Our analysis is cast in terms which bear a great similarity to novel calculational 
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techniques involving cellular automata and lattice-gas approaches for hydrodynamics 
[2], especially in what pertains to the realm of the microscopic origin of cooperativity. 

Following standard notation [4,7], our problem is described by a vector field 
V = (8, U, w) ,  where U = (U, U )  and ( U ,  U ,  w )  is the velocity field for the fluid and 8 is 
the deviation of the temperature from the linear conduction profile between boundaries 
defined by z = 0 and z = 1. The evolution of the vector field is subject to the Boussinesq 
equations. The distance, time and temperature are scaled respectively by d, d 2 / K  and 
~ v / a g d ~ ,  where d is the cell height, K and v are the thermal and viscous diffusivities 
and a is the thermal expansion coefficient. If e!), 14) = qo , j  2 1, are the eigenvectors 
for the linear self-adjoint Boussinesq operator, with qo the critical horizontal wavevector 
for the onset, we get the generic canonical decomposition of the vector field into the 
subordinated component, X , ,  and the C M  mode vector, X , :  

The inner product ( V I ,  V,) is defined by 

(VI,  vZ>={&ez+Rc(uT * u 2 + w T w 2 ) ) m  (3) 

where the symbol { } m  denotes the average over a column, i.e. along the vertical z 
coordinate. The critical Rayleigh number is R = R,  and (+ denotes the Prandtl number. 
For free boundary conditions we have 

( N  - 1 )  R /  R, = ~’/(X,11~ (4) 

where N is the Nusselt number and c is a characteristic proportionality constant which 
depends on the critical number R, and need not be specified here (the reader may 
consult [7] for details). The virtual volume W for fluctuations in the CM equation for 
X ,  scales with a power of the characteristic small parameter L-’  = ( R  - R, ) /  R , .  It is 
precisely this property which enables one to construct a decomposition of the system 
in spatially coupled subcells once the scaling factor for intrinsic fluctuations has been 
determined by dynamic renormalisation. The C M  for this problem is determined by 
projection of the non-linear portion, N (  V , ,  V,), of the Boussinesq operator [4]: 

v;’= I A ~ ’ / - ’  c C ( e t ) ,  N ( e Y ’ ,  e~’ ) )Vf’Vb‘)=((V): ) ) )  ( 5 )  
4 9  

where (( )) denotes the thermal or statistical average and / A $ ) l - ’  is the lifetime of 
fast-relaxing mode V t ’ .  In order to renormalise, we consider the following factorisation 
for the probability density functional P = P(X,, X,, t ) :  

p = Of({ vb“>, JQA{ Vb‘)), > t )  ( 6 )  

( 7 )  Qf = n fl (gt’/ 7~)’” exp[ - g:’( v:’ -(( v:’)))’]. 
M ’ 4 0  1 2 2  

It is precisely from the scaling laws to which the effective diffusion coefficients 
d $ )  = (2g(J))-l/2 are subject that we can obtain the decomposition of the system in 
informatik carriers. Let us decompose d t )  in two factors: d t )  = k a t ) ,  with k to be 
scaled with L-’ and 2:’ = O( 1). Then the cM-reduced ‘smeared’ Fokker-Planck 
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equation is 

The fluctuations need to be renormalised so that (8) reduces to an equation which 
warrants a continuous flow of probability about the CM: 

a,Qs= -c a v ; ) { ( ( V " ) ) ) ~ , ) + k 2  dy)d$)a$; l+(pS.  (9) 

g:) = - ~ y ) / ( k d ( j )  4 )  2 

gb" = p ( L - l T O ) 2  

4 4.4' 

Thus, to O(L- ' ) ,  we get 

(10) 

(11) 

where the average lifetime for the order parameter, 9, is given by 

U -1 2- 

u + 1  - 277 

where 9 is given by 

9 = c  Vy'exp(iq. r ) .  
14/=40 

Thus, intrinsic fluctuations scale with W-' = O( L ) ,  and therefore they grow bound- 
lessly as we approach the critical point. The key point which emerges from this analysis 
is that we have associated to the onset of the CM a decomposition in subystems of 
virtual volume W such that [3] 

w/ v = L-' (14) 

where V is the thermodynamic volume. 
The average lifetime of an information carrier depends on the distribution of 

probability about a strip along the CM, as determined by (7). Thus, the lifetime is 
extremely short as we approach criticality since 

where f is the stochastic source in the evolution of 9. 
For convenience, we shall introduce the definition of 'organised subsystem' by 

which we mean a subsystem whose microstate lies in the CM excluding the attractor 
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(which in any case has measure zero relative to the measure induced in the CM).  

Microstates lying in the CM are given by mode vectors of the form: 

({ v y ) ) a l l  q ;  {(( vb';'))C{ V y ' I a t l  q ) )a l l  q;  j z z ) .  (16) 

We shall define an adequate multiplicity for macrostates not based on equally 
accessible microstates but based on cells of microstates so that the coarse-graining of 
phase space thus defined is compatible with the ensemble of realisations of the random 
source (denotedf). This procedure is carried out by introducing an equivalence relation 
'- ' where the cells are the equivalence classes. The relation is defined as follows. 
Fixing arbitrarily a microstate A, all the microstates with the same macrostate as A 
and connected to A by a phase trajectory with Af = 0 are equivalent to A. We denote 
one such microstate as B. Thus, we have 

A - Bt, B E c ( A )  (17) 

where c ( A )  is the cell containing A. The variation in the source term f is associated 
to the displacement along the phase trajectory. Thus, the coarse-grained phase space 
is the space of microstates modulo - , or the quotient space 

e=z / -  (18) 

where Z denotes the phase space. We need to describe the time evolution of a 
probability distribution p defined on determined by the distribution P in the space 
of collective macroscopic modes. The distribution p is made up of the following 
thermal averages (the angular brackets represent this thermal average which is, in fact, 
the average over the ensemble of subsystems): 

p = b A ) a l l  c ( A ) ~ t  P A  = ( (XA))  (19) 

where xA is the characteristic function for c(A) :  

1 if the subsystem is in a microstate contained in c(A) 
x A = {  otherwise. 

Thus, p A  gives the probability that a subsystem is in cell c(A)  at a given time. Let A 
contained in e denote the collection of cells whose macrostates belong to the CM 
excluding the attractor emerging beyond a hard-mode instability. A measure of the 
degree of organisation is then given by the fraction of organised subsystems: 

Thus, the CM acts as a transient source of free energy since each information carrier 
has a finite lifetime given by the reciprocal of the effective diffusion coefficient 

S being the dimension of the C M  or the number of order parameters. 

of the set of finite-lifetime information carriers, i.e. we restrict the density to 
In order to describe the time behaviour of p,  we need to derive the time evolution 
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where a and p label subsystems in a generic sense. Thus, for arbitrary c(  B) E A, we have 

The terms proportional to (1 - x)  give the probability per unit time that a subsystem 
in a cell c ( A )  E A induces a subsystem outside the CM to become organised by evolving 
to c ( B )  E A. This is so since the probability that a subsystem is in a disorganised cell 
is (1 - x).  The remaining term in ( 2 5 )  corresponds to the destruction of the information 
carrier. The variable x ( t )  represents the level of self-organisation within the CM. Its 
behaviour depends implicitly on the kinetic parameters since the parameters L, D and 
SA, are determined by the C M  reduction. The induction period is given by the length 
of time which must elapse in order for the system to evolve along the CM until the 
microstates realising the attractor are reached by all the subsystems. In other words, 
the induction period is the time it takes the fluctuations to propagate along the CM.  

Thus, it is determined by the time evolution of x. The Perron number (the largest real 
positive eigenvalue), A#, for the matrix ( d / a t  SAB) coincides with the effective diffusion 
coefficient D since the final stationary state in the evolution of x is 

x , ~ =  (1 - D / A # )  = 0. ( 2 6 )  

This relation must hold in order for the attractor to be reached by all subsystems after 
the critical fluctuations have propagated and amplified through the CM. Figure 1 
displays a numerical integration of equation ( 2 5 ) .  The induction period, Tnd, is given 
by 

x(  T"d) = x,, = 0. (27) 

In a simplified model we can impose the restriction of equal induction probabilities 
per unit time between any pair of microstate cells c ( A )  and c ( B ) .  Since L and D can 
be obtained from a stochastic CM treatment for a particular unfolding, the probability 
per unit time can be obtained from the fact that the Perron number is determined by 
equation ( 2 6 ) .  

0.6 

x 0.4 

0.2 

Time (sl 

Figure I .  The induction period as a transient for the onset of a convective pattern. Time 
behaviour for the fraction, x, of organised subsystems as obtained by numerical integration 
of ( 2 5 )  with x(O)= L- ' .  Curve A: L-'=O.O30+!U-*. Curve B: L-'=0.049+$1.049 U-' 
(cf [7]). The other control parameters are specified in the text. 
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The transient for the onset of the convective pattern can thus be taken as T n d  and 
is displayed in figure 1 for realistic values of the control parameters. Curve A corre- 
sponds to L-' = ( R  - R , ) / R , =  0.030+$U-2 and curve B to L-' = 0.049+ 1.049$U-*. 
Here U is the radius of the cell under consideration: U = 4.72. The other parameters 
are: (T = 0.78; q,d = 7r/J2. Curve B gives a T n d  approximately equal to 12 s and is in 
very satisfactory agreement with the experimental results of [7]. 
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